Feature space warping: an approach to relevance feedback

نویسندگان

  • Hoon Yul Bang
  • Tsuhan Chen
چکیده

Relevance feedback has been shown to be an effective tool to enhance content-based information retrieval (CBIR) systems. We propose a new approach to relevance feedback by warping the database’s feature space, or shifting the objects’ data points in a controlled manner responding to user feedback. We demonstrate that given consistent feedback, the performance of the retrieval system can be significantly increased.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Feature Space Warping Relevance Feedback with Transductive Learning

Relevance feedback is a widely adopted approach to improve content-based information retrieval systems by keeping the user in the retrieval loop. Among the fundamental relevance feedback approaches, feature space warping has been proposed as an effective approach for bridging the gap between high-level semantics and the low-level features. Recently, combination of feature space warping and quer...

متن کامل

Document Image Retrieval Based on Keyword Spotting Using Relevance Feedback

Keyword Spotting is a well-known method in document image retrieval. In this method, Search in document images is based on query word image. In this Paper, an approach for document image retrieval based on keyword spotting has been proposed. In proposed method, a framework using relevance feedback is presented. Relevance feedback, an interactive and efficient method is used in this paper to imp...

متن کامل

Dynamic Feature Space Selection in Relevance Feedback Using Support Vector Machines

The selection of relevant features plays a critical role in relevance feedback for content-based image retrieval. In this paper, we propose an approach for dynamically selecting the most relevant feature space in relevance feedback. During the feedback process, an SVM classifier is constructed in each feature space, and its generalization error is estimated. The feature space with the smallest ...

متن کامل

Online Streaming Feature Selection Using Geometric Series of the Adjacency Matrix of Features

Feature Selection (FS) is an important pre-processing step in machine learning and data mining. All the traditional feature selection methods assume that the entire feature space is available from the beginning. However, online streaming features (OSF) are an integral part of many real-world applications. In OSF, the number of training examples is fixed while the number of features grows with t...

متن کامل

M Eta - H Euristics B Ased Arf O Ptimization for I Mage

The proposed approach avoids the semantic gap in image retrieval by combining automatic relevance feedback and a modified stochastic algorithm. A visual feature database is constructed from the image database, using combined feature vector. Very few fast-computable features are included in this step. The user selects the query image, and based on that, the system ranks the whole dataset. The ne...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002